题目内容
13.关于x的方程x+log2x=[x]([x]表示不大于x的最大整数)的解有( )个.A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 由[x]≤x,可得0<x≤1,讨论x=1和0<x<1,结合函数的单调性和零点存在定理,即可得到所求解的个数.
解答 解:由[x]≤x,即有x+log2x=[x]≤x,
即log2x≤0,可得0<x≤1,
当x=1时,有1+log21=1成立;
当0<x<1时,[x]=0,即有x+log2x=0,
令f(x)=x+log2x,f(x)在(0,1)递增,
f($\frac{1}{2}$)=$\frac{1}{2}$-1<0,f(1)=1>0,
则f(x)在(0,1)有且只有一个零点,
即方程仅有一解.
综上可得原方程的解有两个.
故选C.
点评 本题考查方程的解的个数,考查函数零点存在定理的运用,以及运算能力,属于中档题.
练习册系列答案
相关题目
3.若非零向量$\vec a$与向量$\vec b$的夹角为钝角,$|{\vec b}|=2$,且当$t=-\frac{1}{2}$时,$|{\vec b-t\vec a}|$(t∈R)取最小值$\sqrt{3}$.向量$\vec c$满足$({\vec c-\vec b})⊥({\vec c-\vec a})$,则当$\vec c•({\vec a+\vec b})$取最大值时,$|{\vec c-\vec b}|$等于( )
A. | $\sqrt{6}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{5}{2}$ |
5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超过x的最大整数,则函数y=[f(x)]-[f(-x)]的值域为( )
A. | [-1,0] | B. | {-1,1} | C. | {-1,0,1} | D. | [-1,1] |
2.下列函数中,在区间(0,+∞)上为增函数的是( )
A. | y=(x-1)2 | B. | f(x)=2-x | C. | y=log0.5(x+1) | D. | $y=\sqrt{x+1}$ |