题目内容

5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超过x的最大整数,则函数y=[f(x)]-[f(-x)]的值域为(  )
A.[-1,0]B.{-1,1}C.{-1,0,1}D.[-1,1]

分析 分离常数便可得到$f(x)=\frac{1}{2}-\frac{1}{1+{2}^{x}},f(-x)=-\frac{1}{2}+\frac{1}{1+{2}^{x}}$,根据2x>0,从而可以求出$\frac{1}{1+{2}^{x}}$的范围,进一步便可得到$-\frac{1}{2}<f(x)<\frac{1}{2}$,这样根据[x]的定义便可分:$-\frac{1}{2}<f(x)<0$,f(x)=0和$0<f(x)<\frac{1}{2}$三种情况求出[f(x)]和[f(-x)],从而可以得出y值,这样即可求出函数y=[f(x)]-[f(-x)]的值域.

解答 解:$f(x)=\frac{1}{2}-\frac{1}{1+{2}^{x}}$,$f(-x)=-\frac{1}{2}+\frac{1}{1+{2}^{x}}$;
2x>0;
∴$0<\frac{1}{1+{2}^{x}}<1$;
∴$-\frac{1}{2}<f(x)<\frac{1}{2}$,$-\frac{1}{2}<f(-x)<\frac{1}{2}$;
∴①$-\frac{1}{2}<f(x)<0$时,$-\frac{1}{2}<\frac{1}{2}-\frac{1}{1+{2}^{x}}<0$;
$0<-\frac{1}{2}+\frac{1}{1+{2}^{x}}<\frac{1}{2}$;
即$0<f(-x)<\frac{1}{2}$;
∴[f(x)]=-1,[f(-x)]=0;
∴[f(x)]-[f(-x)]=-1;
②f(x)=0时,$\frac{1}{2}-\frac{1}{1+{2}^{x}}=0$;
∴f(-x)=0;
∴[f(x)]=0,[f(-x)]=0;
∴[f(x)]-[f(-x)]=0;
③$0<f(x)<\frac{1}{2}$时,$0<\frac{1}{2}-\frac{1}{1+{2}^{x}}<\frac{1}{2}$;
∴$-\frac{1}{2}<-\frac{1}{2}+\frac{1}{1+{2}^{x}}<0$;
即$-\frac{1}{2}<f(-x)<0$;
∴[f(x)]=0,[f(-x)]=-1;
∴[f(x)]-[f(-x)]=0-(-1)=1;
∴综上得,函数y=[f(x)]-[f(-x)]的值域为{-1,0,1}.
故选:C.

点评 考查函数值域的概念,指数函数的值域,根据不等式的性质求函数的取值范围的方法,理解[x]的定义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网