题目内容
设
是定义在
上的可导函数,且满足
. 若
且
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324469429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324484518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324547653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324562401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324594692.png)
A.![]() | B.![]() |
C.![]() | D.![]() |
A
解:xf′(x)+f(x)≤0⇒[xf(x)]′≤0⇒函数F(x)=xf(x)在(0,+∞)上为常函数或递减,
又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①1
a2>1
b2>0②
①②两式相乘得:f(a)
a ≥f(b)
b ≥0⇒af(b)≤bf(a),故选A.
又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①1
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324687181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324687181.png)
①②两式相乘得:f(a)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324687181.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225324687181.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目