题目内容

已知函数,在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅当x>4时,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数与函数f(x)、g(x)的图象共有3个交点,求m的取值范围.
(I)f(x) x3x2-6x11 
(II)m的取值范围是(-21,-)∪(1,5)∪(5,+∞) 
(I)f(x)=3x2+2ax+b,由题意,-1,2是方程f’(x)0的两根.
                                            4分
f(x1)=x3x2-6x+0
h(x)=f(x)-g(x)= x3x2-2x+c-5
h’(x)=3x2-5x-2=(3x+1) (x-2)
当x>4时,h’(x)>0,h(x)是增函数,∴h(4)=11+c=0   ∴c=-11         7分
f(x) x3x2-6x11                                              8分
(Ⅱ)g(x)=(x-2)2+1   当x=2时,g(x)min=1
f(x)极大值=f(-1)=-  f(x)极小值=f(2)=-2l                         11分
作出函数f(x)、g(x)的草图,由图可得,当函数y=m与函数f(x)、g(x)的图象共有3个交点,
m的取值范围是(-21,-)∪(1,5)∪(5,+∞)                   15分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网