题目内容
【题目】已知向量,若函数的最小正周期为,且在上单调递减.
(1)求的解析式;
(2)若关于的方程在有实数解,求的取值范围.
【答案】(1) (2)
【解析】
(1)利用两角和与差的三角函数化简函数的解析式,求出函数的周期,得到ω,然后求解函数的解析式.
(2)化简方程为:2a(sin2x+cos2x)2﹣2(sin2x﹣cos2x)﹣3a+3=0,令,原方程化为2a(2﹣t2)﹣2t﹣3a+3=0,整理2at2+2t﹣a﹣3=0,等价于2at2+2t﹣a﹣3=0在[﹣1,1]有解.
(1)=,由
当,此时在上单调递增,不符合题意
当,,此时在上单调递减,符合题意
所以
(2)方程即方程
,设
方程等价于在在有解
设
当,若不符合题意
当时,在有解:
方程在有一解,
方程在在有二解,
综上所述:的范围
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程=bx+a;(其中,,,,);
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.