题目内容
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程=bx+a;(其中,,,,);
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
【答案】(1);(2)当单价定为8.25元时,工厂可获得最大利润
【解析】
(1)先求,再根据所给数据分别求出即可(2)写出利润函数,利用二次函数求最值即可.
(1)由平均数公式得
= (x1+x2+x3+x4+x5+x6)=8.5,= (y1+y2+y3+y4+y5+y6)=80.
=-20
所以a=-b=80+20×8.5=250,从而回归直线方程为=-20x+250.
(2)设工厂获得的利润为L元,依题意得
L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-20+361.25.
当且仅当x=8.25时,L取得最大值.
故当单价定为8.25元时,工厂可获得最大利润.
练习册系列答案
相关题目
【题目】现有某高新技术企业年研发费用投入(百万元)与企业年利润(百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:
年科研费用(百万元) | 1 | 2 | 3 | 4 | 5 |
企业所获利润(百万元) | 2 | 3 | 4 | 4 | 7 |
(1)画出散点图;
(2)求对的回归直线方程;
(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?
参考公式:用最小二乘法求回归方程的系数计算公式: