题目内容
4.化简:$\frac{si{n}^{2}(-α-\frac{5π}{2})-co{s}^{2}(α-\frac{7π}{2})}{sin(α-\frac{3π}{2})+cos(-α-\frac{3π}{2})}$.分析 根据三角函数的诱导公式化简即可;注意三角函数的名称和符号.
解答 解:原式=$\frac{si{n}^{2}(α+\frac{5π}{2})-co{s}^{2}(\frac{7π}{2}-α)}{-sin(\frac{3π}{2}-α)+cos(\frac{3π}{2}+α)}$=$\frac{co{s}^{2}α-si{n}^{2}α}{cosα+sinα}$=cosα-sinα.
点评 本题考查了利用三角函数的诱导公式化简三角函数式;熟记口诀:“奇变偶不变,符号看象限”.
练习册系列答案
相关题目
15.已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;
命题q:“?x0∈R,使得x02-x0>0”的否定是:“?x∈R,均有x2-x<0”;
在命题①p∧q;②(?p)∨(?q);③p∨(?q); ④(?p)∨q中,真命题的序号是( )
命题q:“?x0∈R,使得x02-x0>0”的否定是:“?x∈R,均有x2-x<0”;
在命题①p∧q;②(?p)∨(?q);③p∨(?q); ④(?p)∨q中,真命题的序号是( )
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
16.某同学为了计算函数y=lnx图象与x轴,直线x=1,x=e所围成形状A的面积,采用“随机模拟方法”,用计算机分别产生10个在[1,e]上的均匀随机数xi(1≤i≤10)和10个在[0,1]上的均匀随机数yi(1≤i≤10),其数据记录为如下表的前两行.
(1)依次表格中的数据回答,在图形A内的点有多少个,分别是什么?
(2)估算图形A的面积.
xi | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
yi | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnxi | 0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
(2)估算图形A的面积.
14.下列说法中正确的是( )
A. | 若命题p:?x∈R有x2>0,则¬p:?x∈R有x2≤0 | |
B. | 若p是q的充分不必要条件,则¬p是¬q的必要不充分条件 | |
C. | 若命题p:$\frac{1}{x-1}$>0,则¬p:$\frac{1}{x-1}$≤0 | |
D. | 方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$ |