题目内容
已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.
解:(1)由椭圆的定义及已知条件知:2a=|F1B|+|F2B|=10,所以a=5,又c=4,故b=3,.故椭圆的方程为. (4分)
(2)由点B(4,y0)在椭圆上,得|F2B|=|y0|=,因为椭圆的右准线方程为,
离心率.所以根据椭圆的第二定义,有
.因为|F2A|,|F2B|,|F2C|成等差数列,
+,所以:x1+x2="8, " 从而弦AC的中点的横坐标为。
解析
练习册系列答案
相关题目
22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
将椭圆按φ: ,变换后得到圆,则( )
A.λ="3," μ=4 | B.λ="3," μ=2 | C.λ="1," μ= | D.λ="1," μ= |