题目内容

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中把草坪分成面积相等的两部分,上,上.

(1)设,求用表示的函数关系式;
(2)如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请说明理由.

(1)(1≤≤2);(2)中线或中线时,最长.

解析试题分析:(1)在△中,
,①      2分
又S△ADE S△ABC.②     3分
②代入①得-2(>0), ∴(1≤≤2)        4分.
(2)如果是水管y=,
当且仅当x2,即x=时“=”成立,故,且.      8分
如果是参观线路,记2,可知函数在[1,]上递减,
在[,2]上递增,故max(1)=(2)=5.  ∴max.
中线或中线时,最长.     13分
考点:本题主要考查函数模型,均值定理的应用。
点评:中档题,作为函数的应用问题,要遵循“审清题意,设出变量,列出等式,解答问题,作出结论”等步骤。求函数最值时,或利用导数,或利用均值定理,应根据题目特点,灵活选择方法。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网