题目内容
【题目】写出下列各组命题构成的“p或q”、“p且q”以及“非p”形式的命题,并判断它们的真假.
(1) 是有理数,q: 是整数;
(2)不等式x2-2x-3>0的解集是(-∞,-1),q:不等式x2-2x-3>0的解集是(3,+∞).
【答案】
(1)
【解答】p或q: 是有理数或 是整数;
p且q: 是有理数,且 是整数;
非p: 不是有理数.
因为p假,q假,所以p或q为假,p且q为假,非p为真.
(2)
【解答】p或q:不等式x2-2x-3>0的解集是(-∞,-1)或不等式x2-2x-3>0的解集是(3,+∞);
p且q:不等式x2-2x-3>0的解集是(-∞,-1)且不等式x2-2x-3>0的解集是(3,+∞);
非p:不等式x2-2x-3>0的解集不是(-∞,-1).
因为p假,q假,所以p或q假,p且q假,非p为真.
【解析】先根据定义写出“p或q”、“p且q”以及“非p”形式,由判断复合命题的口诀(或命题:有真则真;且命题:有假则假;非命题:真假相反。)进行判断即可。
【题目】某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.