题目内容
在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.
(1)由
,解得f(1)=2,f(2)=3.
所以f(2n+1)-f(2n-1)=[f(2n+1)-f(2n)]+[f(2n)-f(2n-1)]=3+1=4,
所以f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列,公差为4.
(2)当x为奇数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
+2=2x,
当x为偶数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
•1+
•3+2=2x-1
所以f(x)=
.
|
所以f(2n+1)-f(2n-1)=[f(2n+1)-f(2n)]+[f(2n)-f(2n-1)]=3+1=4,
所以f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列,公差为4.
(2)当x为奇数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
(x-1)•4 |
2 |
当x为偶数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
1 |
2 |
x-2 |
2 |
所以f(x)=
|
练习册系列答案
相关题目