题目内容
【题目】已知函数,.
(1)讨论的单调性;
(2)若对任意,都有成立,求实数的取值范围.
【答案】(1)当时,在上,是减函数,当时,在上,是减函数,在上,是增函数;(2)
【解析】
求出函数的定义域,函数的导数,通过a的范围讨论,判断函数的单调性即可.(2)
对任意x>0,都有f(x)>0成立,转化为在(0,+∞)上f(x)min>0,利用函数的导数求解函数的最值即可.
(1)解:函数f(x)的定义域为(0,+∞)
又
当a≤0时,在(0,+∞)上,f′(x)<0,f(x)是减函数
当a>0时,由f′(x)=0得:或(舍)
所以:在上,f′(x)<0,f(x)是减函数
在上,f′(x)>0,f(x)是增函数
(2)对任意x>0,都有f(x)>0成立,即:在(0,+∞)上f(x)min>0
由(1)知:当a≤0时,在(0,+∞)上f(x)是减函数,
又f(1)=2a﹣2<0,不合题意
当a>0时,当时,f(x)取得极小值也是最小值,
所以:
令(a>0)
所以:
在(0,+∞)上,u′(a)>0,u(a)是增函数又u(1)=0
所以:要使得f(x)min≥0,即u(a)≥0,即a≥1,
故:a的取值范围为[1,+∞)
【题目】为了解使用手机是否对学生的学习有影响,某校随机抽取100名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):
使用手机 | 不使用手机 | 总计 | |
学习成绩优秀 | 10 | 40 | |
学习成绩一般 | 30 | ||
总计 | 100 |
(Ⅰ)补充完整所给表格,并根据表格数据计算是否有99.9%的把握认为学生的学习成绩与使用手机有关;
(Ⅱ)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,再从这6人中随机抽取3人,记这3人中“学习成绩优秀”的人数为,试求的分布列与数学期望.
参考公式:,其中.
参考数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |