题目内容
【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.
【答案】
(1)解:函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
可得:1﹣3m+n=0,4﹣6m+n=0,解得m=1,n=2
(2)解:由(1)可得f(x)=x2﹣3x+2,
不等式f(x)﹣k>0在x∈[0,5]恒成立,
可得不等式f(x)>k在x∈[0,5]恒成立,
f(x)=x2﹣3x+2在x∈[0,5]上的最小值为:f( )=﹣ ,
可得k<﹣
(3)解: =x+ ﹣3,函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,
即g(2x)﹣r2x=0在x∈[﹣1,1]上有解,
即r=1+2( )2﹣3 在x∈[﹣1,1]上有解,
令t= ,则r=2t2﹣3t+1,
∵x∈[﹣1,1],∴t∈[ ,2],
即r=2t2﹣3t+1在t∈[ ,2]上有解,
r=2k2﹣2t+1=2(t﹣ )2﹣ ,( ≤t≤2),
∴﹣ ≤r≤3,
∴r的范围是[﹣ ,3]
【解析】(1)利用二次函数的零点,代入方程,化简求解即可.(2)求出函数f(x)的最小值,即可求解k的范围.(3)问题转化为r=1+2( )2﹣3 在x∈[﹣1,1]上有解,通过换元得到r=2t2﹣3t+1在t∈[ ,2]上有解,求出k的范围即可.
【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:
家具名称 | 书桌 | 书柜 | 电脑椅 |
工 时 | |||
产值(千元) | 4 | 3 | 2 |
问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)