题目内容

【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.

【答案】
(1)解:函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.

可得:1﹣3m+n=0,4﹣6m+n=0,解得m=1,n=2


(2)解:由(1)可得f(x)=x2﹣3x+2,

不等式f(x)﹣k>0在x∈[0,5]恒成立,

可得不等式f(x)>k在x∈[0,5]恒成立,

f(x)=x2﹣3x+2在x∈[0,5]上的最小值为:f( )=﹣

可得k<﹣


(3)解: =x+ ﹣3,函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,

即g(2x)﹣r2x=0在x∈[﹣1,1]上有解,

即r=1+2( 2﹣3 在x∈[﹣1,1]上有解,

令t= ,则r=2t2﹣3t+1,

∵x∈[﹣1,1],∴t∈[ ,2],

即r=2t2﹣3t+1在t∈[ ,2]上有解,

r=2k2﹣2t+1=2(t﹣ 2 ,( ≤t≤2),

∴﹣ ≤r≤3,

∴r的范围是[﹣ ,3]


【解析】(1)利用二次函数的零点,代入方程,化简求解即可.(2)求出函数f(x)的最小值,即可求解k的范围.(3)问题转化为r=1+2( )2﹣3 在x∈[﹣1,1]上有解,通过换元得到r=2t2﹣3t+1在t∈[ ,2]上有解,求出k的范围即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网