题目内容
【题目】如图,在四棱锥中,,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.
【答案】
【解析】
(1).要求球的表面积的最小值,需求出球的表面积的算式,为此又需求出球的半径,从而根据算式的特点,用函数的单调性或不等式求出最小值.
(2).列出四棱锥的体积的算式,求出体积取得最大值时变量的取值,从而求出二面角的正切值.
(1).设,则.∵平面,
∴,又,
∴平面,
则四棱锥可补形成一个长方体,球的球心为的中点,
从而球的表面积为.
(2).四棱锥的体积,
则,当时,;当时,.
故,此时,.
过作于,连接,
则为二面角的平面角.
∵,∴.
【题目】在年俄罗斯索契冬奥会某项目的选拔比赛中,、两个代表队进行对抗赛,每队三名队员,队队员是、、,队队员是、、,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得分,负队得分,设队、队最后所得总分分别为、且.
对阵队员 | 队队员胜 | 队队员负 |
(1)求队得分为分的概率;
(2)求的分布列;并用统计学的知识说明哪个队实力较强.
【题目】某市2010年4月1日—4月30日对空气污染指数的监测数据如(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
样本频率分布表:
分组 | 频数 | 频率 |
[41,51) | 2 | |
[51,61) | 1 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | 10 | |
[91,101) | ||
[101,111) | 2 |
(1) 完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.