题目内容

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

【答案】
(1)解:设椭圆C的方程为

由题意

解得a2=16,b2=12.

所以椭圆C的方程为


(2)设P(x,y)为椭圆上的动点,由于椭圆方程为 ,故﹣4≤x≤4.

因为

所以 =

因为当 最小时,点P恰好落在椭圆的右顶点,

即当x=4m时, 取得最小值.而x∈[﹣4,4],

故有4m≥4,解得m≥1.

又点M在椭圆的长轴上,即﹣4≤m≤4.

故实数m的取值范围是m∈[1,4].


【解析】(1)由椭圆的一个焦点F(﹣2,0)可知c=2,且长轴长与短轴长的比即 可求出椭圆方程。
(2)设P(x,y)为椭圆上的动点,根据椭圆的性质可以判断x的范围。代入.点P恰好落在椭圆的右顶点, 最小时.解得m的范围。
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网