题目内容
【题目】整改校园内一块长为15 m,宽为11 m的长方形草地(如图A),将长减少1 m,宽增加1 m(如图B).问草地面积是增加了还是减少了?假设长减少x m,宽增加x m(x>0),试研究以下问题:
x取什么值时,草地面积减少?
x取什么值时,草地面积增加?
【答案】见解析
【解析】
先计算原草地的面积和整改后的草地面积,即得草地面积增加了. 设减少x m,宽增加x m后,计算出新草地的面积,再比较和原草地面积的大小,即得x取什么值时,草地面积减少,
x取什么值时,草地面积增加.
原草地面积S1=11×15=165(m2),
整改后草地面积为:S=14×12=168(m2),
∵S>S1,∴整改后草地面积增加了.
研究:长减少x m,宽增加x m后,草地面积为:
S2=(11+x)(15-x),
∵S1-S2=165-(11+x)(15-x)=x2-4x,
∴当0<x<4时,x2-4x<0,∴S1<S2;
当x=4时,x2-4x=0,∴S1=S2.
当x>4时,x2-4x>0,∴S1>S2.
综上所述,当0<x<4时,草地面积增加,
当x=4时,草地面积不变,
当x>4时,草地面积减少.
【题目】某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为A、B、C三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).
工种类别 | A | B | C |
赔付频率 |
对于A、B、C三类工种职工每人每年保费分别为a元,a元,b元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费a、b所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费a、b所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)