题目内容
矩形中,⊥面,,上的点,且⊥面,、交于点.(1)求证:⊥;(2)求证://面.
(1)略(2)略
解析
(本题满分14分) 如图, 在直三棱柱中,,,.(1)求证:;(2)问:是否在线段上存在一点,使得平面?若存在,请证明;若不存在,请说明理由。
(本小题满分12分)四棱锥的底面是正方形,,点E在棱PB上.若AB=,(Ⅰ)求证:平面; (Ⅱ)若E为PB的中点时,求AE与平面PDB所成的角的大小.
(本小题满分12分)如图,在底面为直角梯形的四棱锥P—ABCD中,,平面(1)求证:平面PAC;(2) 求二面角的大小.
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.
(本小题满分14分)如图,已知正方体,是底对角线的交点.求证:(1)面;(2 )面.
如图,是圆的直径,点在圆上,,交于点,平面,,.(Ⅰ)证明:;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
如图,、为圆柱的母线,是底面圆的直径,、分别是、的中点,.(1)证明:;(2)求四棱锥与圆柱的体积比;(3)若,求与面所成角的正弦值.
如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.(1)求证:B1D^平面PQR;(2)设二面角B1-PR-Q的大小为q,求|cosq|.