题目内容
(本小题满分14分)如图,已知正方体,是底对角线的交点.求证:(1)面;(2 )面.
见解析。
解析
(12分)如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.
如图所示,四面体被一平面所截,截面是一个平行四边形.求证:;
(14分)如图,在直三棱柱中,,点是的中点.(Ⅰ)求证:;(Ⅱ)求证:平面;(Ⅲ)求异面直线与所成角的余弦值.
矩形中,⊥面,,上的点,且⊥面,、交于点.(1)求证:⊥;(2)求证://面.
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ (0<λ<1).(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;(2)当λ为何值时?平面BEF⊥平面ACD.
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD;(3)求二面角C-PB-D的大小。
如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.求证:四边形BCFE是梯形.