题目内容
17.设数列{an}的前n项和为Sn,已知S1=1,S2=2,当n≥2时,Sn+1-Sn-1=2n,(1)求证:an+2-an=2n(n∈N*);
(2)求数列{an}的通项公式;
(3)设Tn=1+$\frac{1}{2}$a2+$\frac{1}{{2}^{2}}$a3+…+$\frac{1}{{2}^{n-1}}$an,求Tn.
分析 (1)当n≥2时,Sn+1-Sn-1=2n,Sn+2-Sn=2n+1,两式相减即可证明;
(2)对n分类讨论,利用(1)的结论即可得出;
(3)当n=2k(k∈N*)时,$\frac{1}{{2}^{2k-1}}{a}_{2k}$=$\frac{2}{3}-\frac{1}{3×{2}^{2k-1}}$.$\frac{1}{{2}^{2k-2}}{a}_{2k-1}$=$\frac{2}{3}$+$\frac{1}{3×{2}^{2k-2}}$.利用等比数列的前n项和公式即可得出.当n=2k-1(k∈N*)时,Tn=T2k-a2k即可得出.
解答 (1)证明:∵当n≥2时,Sn+1-Sn-1=2n,Sn+2-Sn=2n+1,
两式相减可得:an+2-an=2n,
∵S1=1,S2=2,∴S3-S1=22,解得a3=3,∴a3-a1=2.
∴an+2-an=2n(n∈N*).
(2)解:当n=2k-1(k∈N*)时,a2k-1=(a2k-1-a2k-3)+(a2k-3-a2k-5)+…+(a3-a1)+a1
=22k-3+22k-5+…+21+1
=$\frac{2({4}^{k-1}-1)}{4-1}$+1=$\frac{2×{2}^{2k-2}-2}{3}$+1=$\frac{{2}^{2k-1}+1}{3}$,∴an=$\frac{{2}^{n}+1}{3}$.
同理可得当n=2k(k∈N*)时,a2k=$\frac{{4}^{k}-1}{4-1}$=$\frac{{2}^{2k}-1}{3}$,an=$\frac{{2}^{n}-1}{3}$.
∴an=$\left\{\begin{array}{l}{\frac{{2}^{n}+1}{3},n=2k-1}\\{\frac{{2}^{n}-1}{3},n=2k}\end{array}\right.$,(k∈N*).
(3)解:当n=2k(k∈N*)时,
$\frac{1}{{2}^{2k-1}}{a}_{2k}$=$\frac{1}{{2}^{2k-1}}×\frac{{2}^{2k}-1}{3}$=$\frac{2}{3}-\frac{1}{3×{2}^{2k-1}}$.
$\frac{1}{{2}^{2k-2}}{a}_{2k-1}$=$\frac{1}{{2}^{2k-2}}(\frac{{2}^{2k-1}+1}{3})$=$\frac{2}{3}$+$\frac{1}{3×{2}^{2k-2}}$.
∴Tn=1+$\frac{1}{2}$a2+$\frac{1}{{2}^{2}}$a3+…+$\frac{1}{{2}^{2k-1}}{a}_{2k}$=$\frac{2}{3}×2k$+$\frac{1}{3}(1-\frac{1}{2}+\frac{1}{{2}^{2}}-\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{2k-2}}-\frac{1}{{2}^{2k-1}})$
=$\frac{2n}{3}$+$\frac{1}{3}×\frac{1-(-\frac{1}{2})^{2k}}{1-(-\frac{1}{2})}$
=$\frac{2n}{3}$+$\frac{2}{9}$-$\frac{2}{9}(-\frac{1}{2})^{n}$.
当n=2k-1(k∈N*)时,Tn=T2k-a2k=$\frac{2n}{3}$+$\frac{2}{9}$-$\frac{2}{9}(-\frac{1}{2})^{n}$-$\frac{{2}^{n}-1}{3}$=$\frac{2n}{3}$+$\frac{5}{9}$-$\frac{2}{9}(-\frac{1}{2})^{n}$-$\frac{1}{3}•{2}^{n}$.
点评 本题考查了递推式的应用、分类讨论方法、等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
A. | ln(x2+1)>ln(y2+1) | B. | sinx>siny | C. | x3>y3 | D. | $\frac{1}{{{x^2}+1}}>\frac{1}{{{y^2}+1}}$ |