题目内容
(本小题满分14分)已知奇函数有最大值, 且, 其中实数是正整数.求的解析式;令, 证明(是正整数).
(1)(2)证明略
解析
已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;(2)若f(x)的最大值为正数,求实数a的取值范围.
.(本小题满分12分)已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,f(x)>0,当x∈(-∞,-2)∪(6,+∞)时,f(x)<0,(1)求f(x)的解析式.(2)求f(x)在区间[1,10]上的最值。
(14分)函数是定义在(-1,1)上的奇函数,且(1)求函数的解析式;(2)利用定义证明在(-1,1)上是增函数;(3)求满足的的范围.
(12分)已知函数的定义域是集合,函数的定义域为集合(Ⅰ)求集合, (Ⅱ)若,求实数的取值范围
(本小题满分16分)设R,m,n都是不为1的正数,函数(1)若m,n满足,请判断函数是否具有奇偶性. 如果具有,求出相应的t的值;如果不具有,请说明理由;(2)若,且,请判断函数的图象是否具有对称性. 如果具有,请求出对称轴方程或对称中心坐标;若不具有,请说明理由.
设是定义在R上的函数(1)f(x)可能是奇函数吗?(2)当a=1时,试研究f(x)的单调性
(满分16分)某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数()的图象,且是常数.(1)写出服药后y与x的函数关系式;(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)
设为实数,函数. (1)当时,判断函数的奇偶性; (2)求的最小值;