题目内容
.(本小题满分12分)
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,f(x)>0,
当x∈(-∞,-2)∪(6,+∞)时,f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在区间[1,10]上的最值。
解:(1)由题意得a<0,且x=-2,x=6是方程f(x)=0的两个根,由韦达定理得
得
∴. f(x)=-4x2+16x+48 …………………6分
(2)f(x)=-4x2+16x+48=-4(x-2)2+64
∴f max(x)=f(2)=64
f min (x)=f(10)=-192 …………………12分
解析
练习册系列答案
相关题目
(本小题满分12分)
为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数).函数图象如图所示.
根据图中提供的信息,解答下列问题:
(1)求从药物释放开始每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
|