题目内容
【题目】某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.
【答案】(1)见解析(2)定价为22元时,最大值908元.
【解析】
(1)根据条件建立分段函数关系即可;
(2)结合一元二次函数的最值性质即可求出函数的最值.
(1)当0≤x≤10,y=100x﹣500,
当x>10,销量为100﹣3(x﹣10)=﹣3x+130,此时y=(﹣3x+130)x﹣500=﹣3x2+130x﹣500,
故y.
(2)当0≤x≤10,y=100x﹣500≤500,
当x>10,y=﹣3x2+130x﹣500=﹣3(x)2+()2﹣500,
∵x∈N,
∴当x=22时,函数取得最大值,此时y=﹣3×222+130×22﹣500=908,
综上当商品定价为22元时,一天的净收入最高,净收入的最大值为908.
【题目】甲、乙两个班级共有105名学生,某次数学考试按照“大于等于85分为优秀,85分以下为非优秀”的原则统计成绩后,得到如下列联表。
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 | 105 |
已知从甲、乙两个班级中随机抽取1名学生,其成绩为优秀的概率为.
(1)请完成上面的列联表;
(2)能否有把握认为成绩与班级有关系?
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |