题目内容
【题目】有下列四个命题:
①已知-1<a<b<0,则0.3a>a2>ab;
②若正实数a、b满足a+b=1,则ab有最大值;
③若正实数a、b满足a+b=1,则有最大值;
④x,y∈(0,+∞),x3+y3>x2y+xy2.
其中真命题的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
由不等式的性质和指数函数的单调性可判断①;由基本不等式可判断②③;运用作差法和因式分解,可判断④.
①已知﹣1<a<b<0,则0.3a>1,1>a2>ab>0,即有0.3a>a2>ab正确;
②若正实数a、b满足a+b=1,则ab≤()2,有最大值正确;
③若正实数a、b满足a+b=1,则,
有最大值正确;
④x,y∈(0,+∞),x3+y3﹣x2y﹣xy2=x2(x﹣y)﹣y2(x﹣y)
=(x﹣y)2(x+y)0恒成立,当x=y时,x3+y3=x2y+xy2故不正确.
故选:C.
【题目】从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年的 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年 | 85% | 100% | 125% | 150% | 175% | 200% |
连续两年没有出险打7折,连续三年没有出险打6折 |
有评估机构从以往购买了车险的车辆中随机抽取1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计车辆每年出险次数的概率):
一年中出险次数 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
频数 | 500 | 380 | 100 | 15 | 4 | 1 |
(1)求某车在两年中出险次数不超过2次的概率;
(2)经验表明新车商业车险保费与购车价格有较强的线性相关关系,估计其回归直线方程为: =120x+1600.(其中x(万元)表示购车价格,y(元)表示商业车险保费).李先生2016 年1月购买一辆价值20万元的新车.根据以上信息,试估计该车辆在2017 年1月续保时应缴交的保费,并分析车险新政是否总体上减轻了车主负担.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)