题目内容

【题目】已知函数f(x)=2x+log2x+b在区间( ,4)上有零点,则实数b的取值范围是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

【答案】A
【解析】解:∵y1=2x+b单调递增,y2=log2x单调递增
∴f(x)=2x+log2x+b单调递增
又∵数f(x)=2x+log2x+b在区间( ,4)上有零点,
∴f( )<0,f(4)>0.
∴1﹣1+b<0,8+2+b>0
∴﹣10<b<0.
故选:A.
【考点精析】本题主要考查了函数的零点与方程根的关系的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网