题目内容

14.设函数f(x)=2x3-3(a+1)x2+6ax+8(a∈R),若f(x)在区间(-∞,0)上是增函数,求a的取值范围.

分析 求导数可得f′(x)=6(x-a)(x-1),令f′(x)=0,得x1=a,x2=1,由单调性和导数正负的关系分类讨论可得.

解答 解:∵f(x)=2x3-3(a+1)x2+6ax+8,
∴f′(x)=6x2-6(a+1)x+6a=6(x-a)(x-1),
令f′(x)=0,得x1=a,x2=1.
(1)当a<1时,则x<a或x>1时,f′(x)>0,
∴f(x)在(-∞,a)和(1,+∞)上是增函数.
故当0≤a<1时,f(x)在(-∞,0)上是增函数.
(2)当a≥1时,则x<1或x>a时,f′(x)>0.
∴f(x)在(-∞,1)和(a,+∞)上是增函数.
∴f(x)在(-∞,0)上是增函数.
综上可知,当a∈[0,+∞)时,f(x)在(-∞,0)上是增函数.

点评 本题考查导数和函数的单调性,涉及分类讨论的思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网