题目内容
2.求曲线y=$\frac{1}{3}{x^3}+x在点({1,\frac{4}{3}})$处的切线方程6x-3y-2=0.分析 由求导公式和法则求出函数的导数,由导数的几何意义求出切线的斜率,利用点斜式求出切线方程再化为一般式.
解答 解:由题意得,y=$\frac{1}{3}{x}^{3}+x$,则y′=x2+1,
∴在点$(1,\frac{4}{3})$处的切线斜率k=1+1=2,
则在点$(1,\frac{4}{3})$处的切线方程是y-$\frac{4}{3}$=2(x-1),即6x-3y-2=0,
故答案为:6x-3y-2=0.
点评 本题考查导数的几何意义,以及切线方程问题,属于基础题.
练习册系列答案
相关题目
10.直线y=kx+1,当实数k变化时,直线被椭圆$\frac{{x}^{2}}{4}$+y2=1截得的弦长范围是( )
A. | (0,3] | B. | (0,2)∪(2,$\frac{4\sqrt{3}}{3}$] | C. | (0,$\frac{4\sqrt{3}}{3}$] | D. | (2,$\frac{4\sqrt{3}}{3}$] |
12.有人发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱名称里含有数字的比较少,为了研究国籍和邮箱名称里是否含有数字的关系,他收集了124个邮箱名称.其中中国人的有70个,外国人的有54个,中国人的邮箱中有43个含数字,外国人的邮箱中有21个含数字.
(Ⅰ)根据以上数据建立一个2×2列联表:
(Ⅱ)他发现在这组数据中,外国人邮箱名称里含数字的也不少,他不能断定国籍和邮箱名称里是否含有数字有无关系,你能帮他判断一下吗?
下面临界值表仅供参考:
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(Ⅰ)根据以上数据建立一个2×2列联表:
有数字 | 无数字 | 合计 | |
中国人 | |||
外国人 | |||
合计 |
下面临界值表仅供参考:
P(K2=k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |