ÌâÄ¿ÄÚÈÝ
8£®ÖÐÐÄÔÚ×ø±êԵ㣬ÆäÖÐÒ»¸ö½¹µãΪ£¨$\sqrt{3}$£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$ÍÖÔ²µÄ×ó¡¢ÓÒ½¹µãΪF1£¬F2£®£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôPÊǸÃÍÖÔ²ÉϵÄÒ»¸ö¶¯µã£¬Çó$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$µÄ×î´óÖµºÍ×îСֵ£»
£¨¢ó£©Éè¹ý¶¨µãM£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡ÏAOBΪÈñ½Ç£¨ÆäÖÐOΪ×ø±êԵ㣩£¬ÇóÖ±ÏßlµÄбÂÊkµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÄ¶¨ÒåÇóµÃÍÖÔ²·½³Ì£®
£¨¢ò£©¸ù¾ÝÌâÒ⣬Çó³öa£¬b£¬cµÄÖµ£¬È»ºóÉèPµÄ×ø±ê£¬¸ù¾ÝPF1•PF2µÄ±í´ïʽ£¬°´ÕÕÒ»Ôª¶þ´Îº¯ÊýÇó×îÖµ·½·¨Çó½â£®
£¨¢ó£©Éè³öÖ±Ïß·½³Ì£¬ÓëÒÑÖªÍÖÔ²ÁªÁ¢·½³Ì×飬ÔËÓÃÉè¶ø²»ÇóΤ´ï¶¨ÀíÇó³ö¸ùµÄ¹Øϵ£¬Çó³ökµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©¡ßÆäÖÐÒ»¸ö½¹µãΪ£¨$\sqrt{3}$£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¡àc=$\sqrt{3}$£¬$\frac{c}{a}=\frac{\sqrt{3}}{2}$£®
¡àa=2£¬b=1
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$
£¨¢ò£©ÓÉÌâÒâÒ×Öª£¬½¹µãΪ£¨$\sqrt{3}$£¬0£©£¬£¨-$\sqrt{3}$£¬0£©£¬ÉèP£¨x£¬y£©£¬
Ôò$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}=£¨-\sqrt{3}-x£¬-y£©•£¨\sqrt{3}-x£¬-y£©$=${x}^{2}+{y}^{2}-3={x}^{2}+1-\frac{{x}^{2}}{4}-3=\frac{1}{4}£¨3{x}^{2}-8£©$
ÒòΪx¡Ê[-2£¬2]£¬
¹Êµ±x=0£¬¼´µãPΪÍÖÔ²¶ÌÖá¶Ëµãʱ£¬
$\overrightarrow{P{F}_{1}}$ÓÐ×îСֵ-2
µ±x=¡À2£¬¼´µãPΪÍÖÔ²³¤Öá¶Ëµãʱ£¬
$\overrightarrow{P{F}_{1}}$ÓÐ×î´óÖµ1
£¨¢ó£©ÏÔȻֱÏßx=0²»Âú×ãÌâÉèÌõ¼þ£¬
¿ÉÉèÖ±Ïßl£ºy=kx+2£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º$£¨{k}^{2}+\frac{1}{4}£©{x}^{2}+4kx+3=0$
¡à${x}_{1}+{x}_{2}=-\frac{4k}{{k}^{2}+\frac{1}{4}}£¬{x}_{1}{x}_{2}=\frac{3}{{k}^{2}+\frac{1}{4}}$
ÓÉ¡÷=$£¨4k£©^{2}-4£¨{k}^{2}+\frac{1}{4}£©¡Á3=4{k}^{2}-3£¾0$µÃ£º$k£¼-\frac{\sqrt{3}}{2}$»ò$k£¾\frac{\sqrt{3}}{2}$¢Ù
ÓÖ0¡ã£¼¡ÏAOB£¼90¡ã?£»cos¡ÏAOB£¾0cos¡ÏAOB£¾0?$\overrightarrow{OA}•\overrightarrow{OB}£¾0$
¡à$\overrightarrow{OA}•\overrightarrow{OB}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}£¾0$
ÓÖy1y2=£¨kx1+2£©£¨kx2+2£©
=k2x1x2+2k£¨x1+x2£©+4
=$\frac{3{k}^{2}}{{k}^{2}+\frac{1}{4}}+\frac{-8{k}^{2}}{{k}^{2}+\frac{1}{4}}+4=\frac{-{k}^{2}+1}{{k}^{2}+\frac{1}{4}}$
¡ß$\frac{3}{{k}^{2}+\frac{1}{4}}+\frac{-{k}^{2}+1}{{k}^{2}+\frac{1}{4}}£¾0$
¼´k2£¼4£¬¡à-2£¼k£¼2¢Ú
¹ÊÓÉ¢Ù¡¢¢ÚµÃ£º
$-2£¼k£¼-\frac{\sqrt{3}}{2}$»ò$\frac{\sqrt{3}}{2}£¼k£¼2$
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÖ±Ïß¡¢ÍÖÔ²¡¢Æ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÈ»ù´¡ÖªÊ¶£¬ÒÔ¼°×ÛºÏÓ¦ÓÃÊýѧ֪ʶ½â¾öÎÊÌâ¼°ÍÆÀí¼ÆËãÄÜÁ¦£®±¾ÌâΪÖеµÌ⣬ÐèÒªÊìÁ·ÔËÓÃÉè¶ø²»ÇóΤ´ï¶¨Àí£®
A£® | x2-$\frac{y^2}{9}$=1 | B£® | x2-y2=15 | C£® | $\frac{x^2}{9}-{y^2}$=1 | D£® | x2-y2=9 |
A£® | 1006 | B£® | 1008 | C£® | 2015 | D£® | 2016 |
A£® | $\frac{{\sqrt{5}}}{4}$ | B£® | $\frac{{\sqrt{6}}}{6}$ | C£® | $\frac{{\sqrt{5}}}{6}$ | D£® | 2 |