题目内容

【题目】(1)已知是奇函数,求常数m的值;

(2)画出函数的图象,并利用图象回答:k为何值时,方程 无解?有一解?有两解?

【答案】(1)见解析; (2)当k=0或k1时,方程有一解; 当0<k<1时,方程有两解。

【解析】

(1)先求出函数的定义域,再利用奇函数的定义,代入一对相反变量即可直接求常数m的值;

(2)先取绝对值画出分段函数图象,再利用函数的零点即为对应的两个函数图象的交点,把y=k在图象上进行上下平移由两个函数图象交点个数即可找到结论.

(1)

函数定义域是

函数是奇函数,

,即

解得:m=1

(2)函数图像如图:

方程根的个数即为函数与函数y=k交点的个数,由(1)中函数图像可知:

当k<0时,直线y=k与函数的图象无交点,即方程无解;

当k=0或k1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解;

当0<k<1时, 直线y=k与函数的图象有两个不同交点,所以方程有两解.

综上所述:k<0时,方程无解;k=0或k1方程有一解; 0<k<1方程有两解.

练习册系列答案
相关题目

【题目】共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也暴露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(提倡或不提倡),某调查小组随机地对不同年龄段50人进行调查,将调查情况整理如下表:

并且,年龄在的人中持“提倡”态度的人数分别为5和3,现从这两个年龄段中随机抽取2人征求意见.

(Ⅰ)求年龄在中被抽到的2人都持“提倡”态度的概率;

(Ⅱ)求年龄在中被抽到的2人至少1人持“提倡”态度的概率.

【答案】(1);(2).

【解析】试题分析:(1)年龄在[20,25)中共有6人,其中持提倡态度的人数为5,其中抽两人,基本事件总数n=15,被抽到的2人都持提倡态度包含的基本事件个数m=10,由此能求出年龄在[20,25)中被抽到的2人都持提倡态度的概率.(2)年龄在[40,45)中共有5人,其中持提倡态度的人数为3,其中抽两人,基本事件总数n′=10,年龄在[40,45)中被抽到的2人至少1人持提倡态度包含的基本事件个数m′=9,由此能求出年龄在[40,45)中被抽到的2人至少1人持提倡态度的概率.

解析:

(1)设在中的6人持“提倡”态度的为 ,持“不提倡”态度的为.

总的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15个,其中两人都持“提倡”态度的有10个,

所以P==

(2)设在中的5人持“提倡”态度的为 ,持“不提倡”态度的为 .

总的基本事件有(),(),(),(),(),(),(),(),(),(),共10个,其中两人都持“不提倡”态度的只有()一种,所以P==

型】解答
束】
22

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系已知圆的极坐标方程为直线的参数方程为为参数),若交于两点.

(Ⅰ)求圆的直角坐标方程

(Ⅱ)设的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网