题目内容

【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)的对称中心.研究函数f(x)=x+sinπx﹣3的某个对称中心,并利用对称中心的上述定义,可求得f( )+f( )+…+f( )+f( )的值为

【答案】﹣8058
【解析】解:在f(x)=x+sinπx﹣3中, 若x1+x2=2,
则f(x1)+f(x2)=(x1+x2)+sin(x1π)+sin(x2π)﹣6
=2+sin(x1π)+sin(2π﹣x1π)﹣6
=﹣4,
∴f(x)=x+sinπx﹣3的一个对称中心为(1,﹣2),
∴f( )+f( )+f( )+…+f( )+f(
=2014×(﹣4)+f(
=﹣8056+(1+sinπ﹣3)
=﹣8058.
所以答案是:﹣8058.
【考点精析】解答此题的关键在于理解函数的值的相关知识,掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网