ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªSn£¬Tn·Ö±ðÊǵȲîÊýÁÐ{an}Óë{bn}µÄÇ°nÏîºÍ£¬ÇÒ$\frac{S_n}{T_n}=\frac{2n+1}{4n-2}£¨n=1£¬2£¬¡£©$£¬Ôò$\frac{{{a_{10}}}}{{{b_3}+{b_{18}}}}+\frac{{{a_{11}}}}{{{b_6}+{b_{15}}}}$=£¨¡¡¡¡£©A£® | $\frac{11}{20}$ | B£® | $\frac{41}{78}$ | C£® | $\frac{43}{82}$ | D£® | $\frac{23}{42}$ |
·ÖÎö ÓɵȲîÊýÁеÄÐÔÖÊ£¬Öª$\frac{{{a_{10}}}}{{{b_3}+{b_{18}}}}+\frac{{{a_{11}}}}{{{b_6}+{b_{15}}}}$=$\frac{{a}_{10}{+a}_{11}}{{b}_{10}{+b}_{11}}$=$\frac{{S}_{20}}{{T}_{20}}$£¬ÓÉ´ËÄܹ»Çó³ö½á¹û£®
½â´ð ½â£º¡ßSn£¬Tn·Ö±ðÊǵȲîÊýÁÐ{an}£¬{bn}µÄÇ°nÏîºÍ£¬
ÇÒ$\frac{S_n}{T_n}=\frac{2n+1}{4n-2}£¨n=1£¬2£¬¡£©$£¬£¨n¡ÊN+£©£¬
¡à$\frac{{{a_{10}}}}{{{b_3}+{b_{18}}}}+\frac{{{a_{11}}}}{{{b_6}+{b_{15}}}}$=$\frac{{a}_{10}{+a}_{11}}{{b}_{10}{+b}_{11}}$=$\frac{{S}_{20}}{{T}_{20}}$=$\frac{40+1}{80-2}$=$\frac{41}{78}$£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄͨÏʽºÍÇ°nÏîºÍ¹«Ê½µÄÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÁ½Ìõ½¥½üÏß·Ö±ðÓëÅ×ÎïÏßy2=4xµÄ×¼Ïß½»ÓÚA£¬B£¬ÇÒ¡÷AOBµÄÃæ»ýΪ$\sqrt{2}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£® | 4 | B£® | $\sqrt{3}$ | C£® | 3 | D£® | 1 |
14£®¹ýË«ÇúÏß$M£º{x^2}-\frac{y^2}{b^2}=1$×󶥵ãA×÷бÂÊΪ1µÄÖ±Ïßl£®ÈôlÓëË«ÇúÏßMÁ½Ìõ½¥½üÏß·Ö±ðÏཻÓÚµãB¡¢C£¬ÇÒBÊÇACÖе㣬ÔòË«ÇúÏßMÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£® | $\frac{{\sqrt{5}}}{2}$ | B£® | $\frac{{\sqrt{10}}}{3}$ | C£® | $\sqrt{5}$ | D£® | $\sqrt{10}$ |
19£®ÒÑÖª¼¯ºÏAΪ{0£¬4£¬5£¬6}£¬¼¯ºÏBΪ{3£¬6£¬7£¬5£¬9}£¬¼¯ºÏCΪ{0£¬5£¬9£¬4£¬7}£¬Ôò∁uA¡É£¨B¡ÈC£©Îª£¨¡¡¡¡£©
A£® | {3£¬7£¬9} | B£® | {0£¬3£¬7£¬9£¬4£¬5} | C£® | {5} | D£® | ∅ |