题目内容
【题目】如表是我国2012年至2018年国内生产总值(单位:万亿美元)的数据:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
国内生产总值 (单位:万亿美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)从表中数据可知和线性相关性较强,求出以为解释变量为预报变量的线性回归方程;
(2)已知美国2018年的国内生产总值约为20.5万亿美元,用(1)的结论,求出我国最早在那个年份才能赶上美国2018年的国内生产总值?
参考数据:,
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:
,.
【答案】(1);(2)2028年.
【解析】
(1)根据表中给出的数据计算出和,再计算出和,从而得到回归方程;(2)根据(1)中所得的回归方程,令,得到的范围,从而得到答案.
(1),,
,.
所以回归方程为.
(2)由(1)可知,
令,得,
解得,
即要在第17个年份才能超过20.5万亿.
所以用线性回归分析我国最早也要在2028年才能赶上美国2018年的国内生产总值.
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.