题目内容
【题目】设函数,e为自然对数的底数.
(1)求f(x)的单调区间:
(2)若ax2+x+a﹣exx+exlnx≤0成立,求正实数a的取值范围.
【答案】(1)的单调增区间为,单调减区间为,;(2)0<a.
【解析】
(1)求导得,求得、的解集即可得解;
(2)ax2+x+a﹣exx+exlnx≤0成立x﹣lnx,由(1)可得当x=1时,函数y取得极大值,令g(x)=x﹣lnx,(x>0),利用导数研究其单调性即可得出x﹣lnx≥1.进而得出a的取值范围.
(1)函数,e为自然对数的底数,
则,
令可得,,
∴当,时,,单调递减;
当时,,单调递增;
∴的单调增区间为,单调减区间为,;
(2)ax2+x+a﹣exx+exlnx≤0成立x﹣lnx,x∈(0,+∞),
由(1)可得当x=1函数y取得极大值,
令g(x)= x﹣lnx,(x>0),g′(x)= 1,
可得x=1时,函数g(x)取得极小值即最小值.
∴x﹣lnx≥g(1)=1,
当时,即为函数y的最大值,
∴x﹣lnx成立1,解得a;
当时,,不合题意;
综上所述,0<a.
【题目】2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山在经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量(件)与相应的生产总成本(万元)的四组对照数据.
5 | 7 | 9 | 11 | |
200 | 298 | 431 | 609 |
工厂研究人员建立了与的两种回归模型,利用计算机算得近似结果如下:
模型①:;
模型②:.
其中模型①的残差(实际值预报值)图如图所示:
(1)根据残差分析,判断哪一个更适宜作为关于的回归方程?并说明理由;
(2)市场前景风云变幻,研究人员统计了20个月的产品销售单价,得到频数分布表如下:
销售单价分组(万元) | |||
频数 | 10 | 6 | 4 |
若以这20个月销售单价的平均值定为今后的销售单价(同一组中的数据用该组区间的中点值作代表),结合你对(1)的判断,当月产量为12件时,预测当月的利润.
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合,已求得:用指数函数模型拟合的回归方程为,与的相关系数;,,,,,,(其中);
(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本.
参考数据:,
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,,相关系数.