题目内容
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合,已求得:用指数函数模型拟合的回归方程为,与的相关系数;,,,,,,(其中);
(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本.
参考数据:,
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,,相关系数.
【答案】(1)(2)用反比例函数模型拟合效果更好;当产量为10千件时,每件产品的非原料成本估计为21元
【解析】
(1)令,则可转化为,分别求出和,即求得回归方程;
(2)直接利用相关系数公式求与的相关系数,可得,得到用反比例函数模型拟合效果更好,取,可得当产量为10千件时,每件产品的非原料成本为21元.
(1)令,则可转化为,
因为,所以
则,所以,
所以关于的回归方程为;
(2)与的相关系数为:
因为,所以用反比例函数模型拟合效果更好,
把代入回归方程:,(元)
所以当产量为10千件时,每件产品的非原料成本估计为21元.
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,在高三年级中随机选取名学生进行跟踪问卷,其中每周线上学习数学时间不少于小时的有人,在这人中分数不足分的有人;在每周线上学习数学时间不足于小时的人中,在检测考试中数学平均成绩不足分的占.
(1)请完成列联表;并判断是否有的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
分数不少于分 | 分数不足分 | 合计 | |
线上学习时间不少于小时 | |||
线上学习时间不足小时 | |||
合计 |
(2)在上述样本中从分数不足于分的学生中,按照分层抽样的方法,抽到线上学习时间不少于小时和线上学习时间不足小时的学生共名,若在这名学生中随机抽取人,求这人每周线上学习时间都不足小时的概率.(临界值表仅供参考)
(参考公式,其中)