题目内容

【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

x

1

2

3

4

5

6

7

8

y

112

61

44.5

35

30.5

28

25

24

根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合,已求得:用指数函数模型拟合的回归方程为的相关系数,(其中);

1)用反比例函数模型求关于的回归方程;

2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本.

参考数据:

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,相关系数.

【答案】12)用反比例函数模型拟合效果更好;当产量为10千件时,每件产品的非原料成本估计为21

【解析】

1)令,则可转化为,分别求出,即求得回归方程;

2)直接利用相关系数公式求的相关系数,可得,得到用反比例函数模型拟合效果更好,取,可得当产量为10千件时,每件产品的非原料成本为21.

1)令,则可转化为

因为,所以

,所以

所以关于的回归方程为

2的相关系数为:

因为,所以用反比例函数模型拟合效果更好,

代入回归方程:(元)

所以当产量为10千件时,每件产品的非原料成本估计为21.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网