题目内容

17.下列关于函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象的叙述正确的是(  )
A.关于原点对称B.关于y轴对称
C.关于直线x=$\frac{π}{4}$对称D.关于点($\frac{π}{4}$,0)对称

分析 由正弦函数和正切函数的对称性可得.

解答 解:由2x=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z
∴当k=0时,可得y=$\sqrt{3}$cos2x的图象关于点($\frac{π}{4}$,0)对称,
同理由x-$\frac{π}{4}$=$\frac{kπ}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z
∴可得y=tan(x-$\frac{π}{4}$)的图象关于点($\frac{π}{4}$,0)对称,
∴函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象关于点($\frac{π}{4}$,0)对称
故选:D

点评 本题考查三角函数的对称性,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网