题目内容
【题目】已知抛物线,焦点为,准线为,线段的中点为.点是上在轴上方的一点,且点到的距离等于它到原点的距离.
(1)求点的坐标;
(2)过点作一条斜率为正数的直线与抛物线从左向右依次交于两点,求证:.
【答案】(1);(2)详见解析.
【解析】
(1)由点到的距离等于它到原点的距离,得,又为线段的中点,所以,设点的坐标为,代入抛物线的方程,解得,即可得到点坐标.
(2)设直线的方程为,代入抛物线的方程,根据根与系数的关系,求得,,进而得到,进而得到直线和的倾斜角互补,即可作出证明.
(1)根据抛物线的定义,点到的距离等于,
因为点到的距离等于它到原点的距离,所以,
从而为等腰三角形,
又为线段的中点,所以,
设点的坐标为,代入,解得,
故点的坐标为.
(2)设直线的方程为,代入,并整理得,
由直线与抛物线交于、两点,得,
结合,解得,
由韦达定理,得,,
,
所以直线和的倾斜角互补,从而,
结合轴,得,故.
【题目】一鲜花店一个月(30天)某种鲜花的日销售量与销售天数统计如下:
日销售量(枝) | 0~49 | 50~99 | 100~149 | 150~199 | 200~250 |
销售天数(天) | 3天 | 3天 | 15天 | 6天 | 3天 |
将日销售量落入各组区间的频率视为概率.
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的6天中选择2天作促销活动,求这2天的日销售量都低于50枝的概率(不需要枚举基本事件).
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).
(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |