题目内容
【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
【答案】C
【解析】解:由f(x)=﹣f(x+ )得f(x+ )=﹣f(x), ∴f(x+3)=﹣f(x+ )=f(x),即函数的周期为3,
又f(﹣1)=1,∴f(2)=f(﹣1+3)=f(﹣1)=1,
且f( )=﹣f(﹣1)=﹣1,
∵函数图象关于点(- ,0)呈中心对称,
∴f(x)+f(﹣x﹣ )=0,则f(x)=﹣f(﹣x﹣ ),
∴f(1)=﹣f(﹣ )=﹣f( )=1,
∵f(0)=﹣2,∴f(3)=f(0)=﹣2,
则f(1)+f(2)+f(3)=1+1﹣2=0
∴f(1)+f(2)+…+f(2017)=f(1)=1,
故选C.
【考点精析】根据题目的已知条件,利用函数的值的相关知识可以得到问题的答案,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
练习册系列答案
相关题目