题目内容

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

(1)见解析(2)a=-(3)当a∈时,最小项为8a-1;当a=时,最小项为4a或8a-1;当a∈时,最小项为4a;当a=时,最小项为4a或2a+1;
当a∈时,最小项为2a+1.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网