题目内容
【题目】设函数f(x)=lg[log ( x﹣1)]的定义域为集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(RB)∩A;
(2)若2a∈A,且log2(2a﹣1)∈B,求实数a的取值范围.
【答案】
(1)解:函数f(x)=lg[log ( x﹣1)]的定义域是集合A;
函数f(x)的定义域满足. ,
∴ ,
∴2<x<4,
∴集合A=(2,4);
集合B={x|x<1,或x≥3}.即B=(﹣∞,1)∪[3,+∞),
∴RB=[1,3),
故得∴A∪B=(﹣∞,1)∪(2,+∞);
(RB)∩A=(2,3)
(2)解:由(1)得A=(2,4);B=(﹣∞,1)∪[3,+∞),
∵2a∈A,
∴2<2a<4,
解得:1<a<2,
又∵log2(2a﹣1)∈B,
∴log2(2a﹣1)<1或log2(2a﹣1)≥3,
∴0<2a﹣1<2或2a﹣1≥8,
解得
∴ .
所以实数a的取值范围是(1, )
【解析】(1)由题意:求函数的定义域得到集合A,在根据集合的基本运算求解A∪B,(RB)∩A;(2)因为2a∈A,log2(2a﹣1)∈B,即A是2a的值域,B是log2(2a﹣1)的值域,即可求解a的范围.
【考点精析】本题主要考查了元素与集合关系的判断和对数的运算性质的相关知识点,需要掌握对象与集合的关系是,或者,两者必居其一;①加法:②减法:③数乘:④⑤才能正确解答此题.
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如表的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 100 |
已知在全部100人中抽到随机抽取1人为优秀的概率为
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名学生组成一个样本,再从样本中抽出2名学生,记甲班被抽到的人数为ξ,求ξ的分布列和数学期望.
参考公式和数据:K2= ,其中n=a+b+c+d
下面的临界值表供参考:
p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |