题目内容

【题目】设函数f(x)=lg[log x﹣1)]的定义域为集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(RB)∩A;
(2)若2a∈A,且log2(2a﹣1)∈B,求实数a的取值范围.

【答案】
(1)解:函数f(x)=lg[log x﹣1)]的定义域是集合A;

函数f(x)的定义域满足.

∴2<x<4,

∴集合A=(2,4);

集合B={x|x<1,或x≥3}.即B=(﹣∞,1)∪[3,+∞),

RB=[1,3),

故得∴A∪B=(﹣∞,1)∪(2,+∞);

RB)∩A=(2,3)


(2)解:由(1)得A=(2,4);B=(﹣∞,1)∪[3,+∞),

∵2a∈A,

∴2<2a<4,

解得:1<a<2,

又∵log2(2a﹣1)∈B,

∴log2(2a﹣1)<1或log2(2a﹣1)≥3,

∴0<2a﹣1<2或2a﹣1≥8,

解得

所以实数a的取值范围是(1,


【解析】(1)由题意:求函数的定义域得到集合A,在根据集合的基本运算求解A∪B,(RB)∩A;(2)因为2a∈A,log2(2a﹣1)∈B,即A是2a的值域,B是log2(2a﹣1)的值域,即可求解a的范围.
【考点精析】本题主要考查了元素与集合关系的判断和对数的运算性质的相关知识点,需要掌握对象与集合的关系是,或者,两者必居其一;①加法:②减法:③数乘:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网