题目内容
【题目】已知函数(, 是自然对数的底数).
(1)当时,求曲线在点处的切线方程;
(2)当时,不等式恒成立,求实数的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)由导数几何意义得切线斜率为,再根据点斜式求切线方程(2)不等式恒成立问题,一般转化为对应函数最值问题: ,利用导数研究函数最小值时,先根据,得导函数在 上单调递增,因此,即得实数的取值范围.
试题解析:(Ⅰ)当时,有,
则.
又因为,
∴曲线在点处的切线方程为,即
(Ⅱ)因为,令
有()且函数在上单调递增
当时,有,此时函数在上单调递增,则
(ⅰ)若即时,有函数在上单调递增,
则恒成立;
(ⅱ)若即时,则在存在,
此时函数在 上单调递减, 上单调递增且,
所以不等式不可能恒成立,故不符合题意;
当时,有,则在存在,此时上单调递减, 上单调递增所以函数在上先减后增.
又,则函数在上先减后增且.
所以不等式不可能恒成立,故不符合题意;
综上所述,实数的取值范围为
练习册系列答案
相关题目