题目内容

6.已知点(1,-2)和$({\frac{{\sqrt{3}}}{3},0})$在直线l:ax-y-1=0(a≠0)的两侧,则直线l倾斜角的取值范围是(  )
A.$({\frac{π}{4},\frac{π}{3}})$B.$({\frac{2π}{3},\frac{5π}{6}})$C.$({0,\frac{π}{3}})∪({\frac{3π}{4},π})$D.$({\frac{π}{3},\frac{2π}{3}})$

分析 因为点(1,-2)和$({\frac{{\sqrt{3}}}{3},0})$在直线l:ax-y-1=0(a≠0)的两侧,那么把这两个点代入ax-y-1,它们的符号相反,乘积小于0,求出a的范围,设直线l倾斜角为θ,则a=tanθ,再根据正切函数的图象和性质即可求出范围.

解答 解:因为点(1,-2)和$({\frac{{\sqrt{3}}}{3},0})$在直线l:ax-y-1=0(a≠0)的两侧,
所以,(a+2-1)($\frac{\sqrt{3}}{3}$a-1)<0,
即:(a+1)(a-$\sqrt{3}$)<0,
解得-1<a<$\sqrt{3}$,
设直线l倾斜角为θ,
∴a=tanθ,
∴-1<tanθ<$\sqrt{3}$,
∴0<θ<$\frac{π}{3}$,或$\frac{3π}{4}$<θ<π,
故选:C.

点评 本题考查二元一次不等式组与平面区域问题,点与直线的位置关系,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网