题目内容
【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有;
(3)当为何值时,与平面所成角的大小为45°.
【答案】(1)EF//面PAC (2)见解析(3)
【解析】
试题⑴当E是BC中点时,因F是PB的中点,所以EF为的中位线,
故EF//PC,又因面PAC,面PAC,所以EF//面PAC
⑵证明:因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,
又DA//CB,所以CB⊥面PAB,而面PAB,所以,
又在等腰三角形PAB中,中线AF⊥PB,PBCB=B,所以AF⊥面PBC.
而PE面PBC,所以无论点E在BC上何处,都有
⑶以A为原点,分别以AD、AB、AP为x、y、z轴建立坐标系,设,
则,,,设面PDE的法向量为,
由,得,取,又,
则由,得,解得.
故当时,PA与面PDE成角
练习册系列答案
相关题目