题目内容
【题目】如图,边长为4的正方形与矩形所在平面互相垂直,分别为的中点,.
(1)求证:平面;
(2)求证:平面;
(3)在线段上是否存在一点,使得?若存在,求出的长;若不存在,请说明理由.
【答案】(I)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,
【解析】
试题分析:(I)由面面垂直的性质定理可直接证得。(Ⅱ)将转化为的中点,利用中位线证∥,再根据线面平行的判定定理即可证MN∥平面CDFE。(Ⅲ)假设存在点P使AP⊥MN,由(I)易得所以。(Ⅲ)由逆向思维可知只需证得,因为,即可证得AP⊥MN。由相似三角形的相似比即可求得FP。
试题解析:(I)因为为正方形,所以。
因为平面,,,所以.
(Ⅱ)连结
因为是的中点,且为矩形,所以也是的中点。因为是的中点,所以∥,因为,所以MN∥平面CDFE。
(Ⅲ)过点作交线段于点,则点即为所求。因为ABCD为正方形,所以∥。因为,所以,因为,所以。因为,且,所以,因为,所以。因为与相似,所以,因为,所以。
【题目】中国共产党第十九次全国代表大会于2017年10月18日至10月24日在北京召开,会议提出“决胜全面建成小康社会”.某市积极响应开展“脱贫攻坚”,为2020年“全面建成小康社会”贡献力量.为了解该市农村“脱贫攻坚”情况,从某县调查得到农村居民2011年至2017年家庭人均纯收入(单位:百元)的数据如下表:
注:小康的标准是农村居民家庭年人均纯收入达到8000元.
年 份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均纯收入y百元 | 41 | 45 | 48 | 56 | 60 | 64 | 71 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测2020年该县农村居民家庭年人均纯收入指标能否达到“全面建成小康社会”的标准?
附:回归直线斜率和截距的最小二乘估计公式分别为:
,,其中.