题目内容
【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.
(Ⅰ)求的分布列及数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.
【答案】(Ⅰ);(Ⅱ)
【解析】
试题(1)由题意知,的可能取值为,,,,分别求出相应的概率,由此能求出的分布列和;(2)由表示“甲队得分等于乙队得分等于”,表示“甲队得分等于乙队得分等于”,可知、互斥.利用互斥事件的概率计算公式即可得出甲、乙两队总得分之和等于分且甲队获胜的概率.
试题解析:(1)由题意知,的所有可能取值为.;
;
;
.
的分布列为
.
(2)用表示“甲得分乙得分”, 用表示“甲得分乙得分”, 且互斥,
又,,甲、乙两队得分总和为分且甲获胜的概率为.
练习册系列答案
相关题目
【题目】某汽车公司为调查4S店个数对该公司汽车销量的影响,对同等规模的A,B,C,D四座城市的4S店一个月某型号汽车销量进行了统计,结果如下表:
城市 | A | B | C | D |
4S店个数x | 3 | 4 | 6 | 7 |
销售台数y | 18 | 26 | 34 | 42 |
(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(2)根据统计每个城市汽车的盈利(万元)与该城市4S店的个数x符合函数,,为扩大销售,该公司在同等规模的城市E预计要开设多少个4S店,才能使E市的4S店一个月某型号骑车销售盈利达到最大,并求出最大值.
附:回归方程中的斜率和截距的最小二乘法估计公式分别为:,