题目内容
【题目】在复平面内,给出以下四个说法:
①实轴上的点表示的数均为实数;
②虚轴上的点表示的数均为纯虚数;
③互为共轭复数的两个复数的实部相等,虚部互为相反数;
④已知复数满足,则在复平面内所对应的点位于第四象限.
其中说法正确的个数为( )
A.B.C.D.
【答案】C
【解析】
根据复数的几何意义可判断出命题①②的正误,根据共轭复数的概念判断命题③的正误,利用复数的除法求出复数,结合复数的几何意义可判断出命题④的正误.
对于命题①,由复数的几何意义知,实轴上的点表示的数均为实数,命题①正确;
对于命题②,原点在虚轴上,原点代表的数为零,不是纯虚数,命题②错误;
对于命题③,互为共轭复数的两个复数的实部相等,虚部互为相反数,命题③正确;
对于命题④,由,得,所以,复数在复平面内所对应的点在第四象限,命题④正确.
因此,正确的命题为①③④.
故选:C.
练习册系列答案
相关题目