题目内容

【题目】定义:在数列 中,若 为常数)则称 为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若 是“等方差数列”,在数列 是等差数列;
是“等方差数列”;
③若 是“等方差数列”,则数列 为常)也是“等方差数列”;
④若 既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

【答案】B
【解析】①:可以举反例。如an=0时数列 不存在,所以①错误;②:对数列{(2)n}有 不是常数,所以②错误③:对数列{akn}有

而k,p均为常数,所以数列{akn}也是“等方差数列”,所以③正确;④:设数列{an}首项a1,公差为d则有a2=a1+d,a3=a1+2d,所以有(a1+d)2a21=p,且(a1+2d)2(a1+d)2=p,所以得d2+2a1d=p,3d2+2a1d=p,两式相减得d=0,所以此数列为常数数列,所以④正确。

所以答案是:B.

【考点精析】解答此题的关键在于理解等差数列的性质的相关知识,掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网