题目内容

【题目】平面α内有一以AB为直径的圆,PA⊥α,点C在圆周上移动(不与A,B重合),点D,E分别是A在PC,PB上的射影,则( )
A.∠ACD是二面角A﹣PC﹣B的平面角
B.∠AED是二面角A﹣PB﹣C的平面角
C.∠EDA是二面角A﹣PC﹣B的平面角
D.∠DAE是二面角B﹣PA﹣C的平面角

【答案】B
【解析】解:∵PA⊥⊙O所在平面α,BCα,

∴PA⊥BC,

∵AB是⊙O的直径,

∴BC⊥AC,

∵PA∩AC=A,

∴BC⊥平面PAC,

∴AD⊥BC,

又∵D是点A在PC上的射影,

∴AD⊥PC,

∵BC∩PC=C,

∴AD⊥平面PBC,

∴AD⊥PB,

又∵AE⊥PB,AD∩AE=A

∴PB⊥面ADE,

∴∠AED是二面角A﹣PB﹣C的平面角.

所以答案是:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网