题目内容

9.在平面几何中,若正三角形的内切圆面积为S1,外接圆面积为S2,则$\frac{S_1}{S_2}=\frac{1}{4}$,类比上述命题,在空间中,若正四面体的内切球体积V1,外接球体积为V2,则$\frac{V_1}{V_2}$=1:27.

分析 平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的外接球和内切球的半径之比是 3:1,从而得出正四面体的内切球体积为V1,外接球体积为V2之比.

解答 解:从平面图形类比空间图形,从二维类比三维,
可得如下结论:正四面体的外接球和内切球的半径之比是 3:1
故正四面体的内切球体积为V1,外接球体积为V2之比等于$\frac{V_1}{V_2}$=1:27.
故答案为:1:27.

点评 主要考查知识点:类比推理,简单几何体和球,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网