ÌâÄ¿ÄÚÈÝ

ÒÑÖªµãÁÐB1(1,y1)¡¢B2(2,y2)¡¢¡­¡¢Bn(n,yn)£¨n¡ÊN£© ˳´ÎΪһ´Îº¯ÊýͼÏóÉϵĵ㣬 µãÁÐA1(x1,0)¡¢A2(x2,0)¡¢¡­¡¢An(xn,0)£¨n¡ÊN£© ˳´ÎΪxÖáÕý°ëÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬ ¶ÔÓÚÈÎÒân¡ÊN£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔ BnΪ¶¥µãµÄµÈÑüÈý½ÇÐÎ.
¢ÅÇó{yn}µÄͨÏʽ£¬ÇÒÖ¤Ã÷{yn}ÊǵȲîÊýÁУ»
¢ÆÊÔÅжÏxn+2-xnÊÇ·ñΪͬһ³£Êý£¨²»±ØÖ¤Ã÷£©£¬²¢Çó³öÊýÁÐ{xn}µÄͨÏʽ£»
¢ÇÔÚÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬ Çë˵Ã÷ÀíÓÉ.
£¨1£©(nÎN)£»£¨2£©xn= 
£¨3£©´æÔÚÖ±½ÇÈýÐΣ¬´ËʱaµÄֵΪ¡¢¡¢.
£¨I£©ÒòΪ(nÎN),Ò׸ù¾ÝµÈ²îÊýÁеĶ¨ÒåÅжϳö{yn}ΪµÈ²îÊýÁÐ.
£¨II£©½â±¾Ð¡ÌâµÄ¹Ø¼üÊÇÏȸù¾Ýxn+1-xn=2Ϊ³£Êý,¿ÉÈ·¶¨µÄÆæÊýÏîºÍżÊýÏî·Ö±ð³ÉµÈ²îÊýÁУ¬´Ó¶øÇó³ö.
(III) ҪʹAnBnAn+1Ϊֱ½ÇÈýÐΣ¬Ôò |AnAn+1|=2=2()Þxn+1-xn=2()£¬
µ±nΪÆæÊýʱ£¬xn+1-xn=2(1-a)£»µ±nΪżÊýʱ£¬xn+1-xn=2a.È»ºó·Ö±ðÑо¿¼´¿É.
£¨1£©(nÎN),yn+1-yn=,¡à{yn}ΪµÈ²îÊýÁÐ (4¢)
£¨2£©xn+1-xn=2Ϊ³£Êý (6¢) ¡àx1,x3,x5,¡­,x2n-1¼°x2,x4,x6,,¡­£¬x2n¶¼Êǹ«²îΪ2µÄµÈ²îÊýÁУ¬
¡àx2n-1=x1+2(n-1)=2n-2+a£¬x2n=x2+2(n-1)=2-a+2n-2=2n-a£¬
¡àxn= 
£¨3£©ÒªÊ¹AnBnAn+1Ϊֱ½ÇÈýÐΣ¬Ôò |AnAn+1|=2=2()Þxn+1-xn=2()
µ±nΪÆæÊýʱ£¬xn+1=n+1-a£¬xn=n+a-1,¡àxn+1-xn=2(1-a).
Þ2(1-a)=2() Þa=(nΪÆæÊý£¬0£¼a£¼1)  (*)
È¡n=1£¬µÃa=£¬È¡n=3£¬µÃa=£¬Èôn¡Ý5£¬Ôò(*)Î޽⣻ (14¢)
µ±Å¼Êýʱ£¬xn+1=n+a£¬xn=n-a£¬¡àxn+1-xn=2a.
¡à2a=2()Þa=(nΪżÊý£¬0£¼a£¼1)  (*¢)£¬È¡n=2£¬µÃa=,
Èôn¡Ý4£¬Ôò(*¢)ÎÞ½â.
×ÛÉÏ¿ÉÖª£¬´æÔÚÖ±½ÇÈýÐΣ¬´ËʱaµÄֵΪ¡¢¡¢. (18¢)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø