题目内容
【题目】已知正方体,在空间中到三条棱所在直线距离相等的点的个数( )
A. 0B. 2C. 3D. 无数个
【答案】D
【解析】
由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后证明结论.
在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,
并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,
因为(1,1,1),
所以设P(a,a,a),其中0≤a≤1.
作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,
则PF是点P到直线A1D1的距离.
所以PF;
同理点P到直线AB、CC1的距离也是.
所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,
所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.
故选:D.
练习册系列答案
相关题目