题目内容

【题目】三角形面积为S=(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h为四面体的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径,设四面体的内切球的球心为O,则球心O到四个面的距离都是r)

【答案】D

【解析】

根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可

设四面体的内切球的球心为O,则球心O到四个面的距离都是r,
根据三角形的面积的求解方法:分割法,将O与四顶点连起来,
可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,V=(S1+S2+S3+S4) ·r·
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网